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The structure of organized vortices in a free shear layer 

By R. T. PIERREHUMBERTT AND S. E. WIDNALL 
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(Received 16 July 1979 and in revised form 28 March 1980) 

A new family of solutions to the steady Euler equations corresponding to spatially 
periodic states of a free shear layer is reported. This family bifurcates from a parallel 
shear layer of finite thickness and uniform vorticity, and extends continuously to a 
shear layer consisting of a row of concentrated pointlike vortices. The energetic 
properties of the family are considered, and it is concluded that a vortex in a row of 
uniform vortices produced by periodic roll-up of a vortex sheet must have a major 
axis of length approximately 50% or more of the distance between vortex centres; 
it is also concluded that vortex amalgamation events tend to reduce vortex size 
relative to spacing. The geometric and energetic properties of the solutions confirm 
the mathematical basis of the tearing mechanism of shear-layer growth first proposed 
in an approximate theory of Moore & Saffman (1975). 

1. Introduction 
Recent experimental evidence indicates that the planar free shear layer has an 

organized two-dimensional structure over a wide range of Reynolds numbers, and that 
this structure plays an important role in the growth of the shear layer (Brown & 
Roshko 1974; Browand & Weidman 1976; Roshko 1976; Winant & Browand 1974). 
As Saffman & Baker (1979) note in their review article, this has revived considerable 
intereet in solutions to the two-dimensional Euler equations and their properties. In  
particular, it has been hoped that some features of the coherent two-dimensional 
shear-layer votices could be explained on the basis of the properties of steady solutions 
to the two-dimensional Euler equations. It is natural to inquire to what extent the 
observed vortices not undergoing pairing can be represented as steady states of the 
Euler equations. Moreover, there is theoretical evidence that in situations where no 
steady state exists, a vortex will rapidly break up (Moore & Saffrnan 1971, 1975). 
Thus, the properties of the stationary solutions may be expected to provide bounds 
on gross characteristics of even very unsteady vortices. In  this paper, we shall present 
a new family of steady shear-layer vortices and discuss the mechanisms of shear- 
layer growth in light of their properties. We shall pay particular attention to the 
energetics of roll-up, pairing and tearing. 

Moore & Saffman (1975) calculated the steady state shape of an infinite row of 
co-rotating vortices under the assumption that each vortex was characterized by 
constant vorticity within some closed curve embedded in irrotational fluid, and that 
the net influence of all the neighbours of a given vortex could be approximated by R 
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uniform plane strain. Although the latter approximation is strictly valid only for 
vortex cores which are small compared to the space between vortices, the results are 
apt to be qualitatively correct. Under the assumption of uniform strain, the vortex 
boundaries are ellipses with semi-major and semi-minor axes of, say, a and b, and the 
major axes are oriented in the streamwise direction. For steady vortices with spacing 1 
(measured by distance between vortex centres), the thickness of the shear layer is 
limited by the inequality 2b < 0.361; from this property, the authors conclude that 
when turbulent diffusion causes the thickness to exceed the bound for steady vortices, 
the vortices must break up and reorganize into a shear layer with larger 1. This proy)cess, 
referred to as ‘tearing’, is distinct from the conventional pairing process. The thick- 
ness bound is derived from the inequality (ab)) < 0.31, so that the tearing criterion 
can also be expressed as a bound on the area of steady vortices for fixed spacing. While 
these results are suggestive, they are inconsistent with the assumptions made in 
deriving the steady states, as the area maximum occurs only when 2a > 1, implying 
that neighbouring vortices overlap. In  the present work, we make use of numerical 
techniques developed in Pierrehumbert (1980a) to relax the assumption of uniform 
plane strain, replacing it with the actual influence of an infinite row of identically 
shaped vortices. In this more precise calculation, the area maximum occurs before 
the neighbouring vortices touch. This result supports the key principle behind the 
tearing mechanism. 

In  addition to computing the family of vortex boundaries, we have computed the 
kinetic energy associated with each member of the family. In $3, it will be seen that 
energetic constraints place a lower bound on the size of vortex cores resulting from the 
roll-up of a vortex sheet into a row of vortices of fixed spacing; this argument is 
similar to that used by Spreiter & Sacks (1951) to  predict the structure of aircraft 
trailing vortices. The energy computation is also used to investigate general features 
of vortex amalgamation events, including entrainment, core size transitions, and 
evolution toward self-similarity . 

2. Steady-state shear-layer vortices 
In two dimensions, the steady Euler equations become simply 

(4.z + a,,, = 4 v 2  (1) 

where \r is the Stokes stream function and w ( Y )  is an arbitrary function. For any 
choice of the arbitrary function and specification of boundary conditions, (1) defines 
a nonlinear elliptical problem for Y. We will now specialize this problem to the case 
of the free shear layer. Let x be the mean streamwise direction and y be the direction 
of the mean velocity gradient. Then, we require that Y + + U, y + const. at y = + co 
andY --f - U,y + const. at  y = - 00. Further, to allow for a coherent vortex structure, 
we require that Y be periodic of period 1 in the x direction. In  most experimental 
arrangements, this condition will not be met, as the shear layer is generally allowed to 
develop downstream of a splitter plate or backwards step; the arrangement we have 
assumed corresponds more nearly to a stage in the development of an infinite parallel 
shear layer that has been created a t  an initial instant of time. However, the problem 
as stated is the more tractable one, and should fairly well reproduce the experimental 
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results so long as we are interested in a stretch of the shear layer conta&g no more 
than two or three vortices. There is still considerable freedom in the choice of the 
arbitrary function. It will be sufficient to consider the function in one cell, say from 
x = -41 to x = 81, since the stream function and all flow properties are identical 
from cell to cell. Within the cell, we assume that w = wo within some simply connected 
compact region S bounded by a curve as, and that w = 0 outside S. With this choice of 
vorticity distribution, the flow is completely specified by the knowledge of 88,  and 
(1) becomes identical to the requirement that as be a streamline, since vorticity is 
constant within S. This is also the distribution used by Moore & Saffman, and hence 
most suitable for comparison with their results. Many other choices off are possible. 
Stuart (1967), for instance, studied solutions with f(@) = exp ( -  @). The most physic- 
ally appropriate choice off depends in a manner not yet understood on the details of 
the roll-up proceas which gives rise to the vortices. The comparison between Stuart 
vortices and uniform vortices as a model of the observed vortices will be discussed 
later in this section. 

Deem t Zabusky (1978) have examined steady and unsteady states of uniform 
vortices, but have not considered the shear layer configuration. Elsewhere (Pierre- 
humbert 1980a), we conaidered the structure of a translating pair of contra-rotating 
vortices, and developed a simple, efficient iterative method for computing the steady 
boundary shapes. This method can be easily extended to the geometry of interest in 
the present work. E’irst, we formally invert (1) using the Green’s function for the 
periodic geometry. For uniform vortices this yields 

P P  

The appropriate Green’s function may be found in Lamb (1932), and is given by 

G(x,y) = (4n)-l1n(cosh2 (2y)-cos2(2x)). (3) 

Implicit in this choice is the specification that the vortex spacing 1 = n. Results for 
other values of the vortex spacing can easily be obtained by dimensional analysis. By 
differentiating (2), we easily fhd that 

where the path integral is taken in the clockwise sense. We want to find a shape S 
such that Y is constant on as. To this end, we introduce the function A’? = Y -Yo, 
where Yo is the value of the stream function at some arbitrary point on hS’. AY is 
found by numerically integrating (4) along as. We now assume that S is symmetric 
about some horizontal line, which we will take as the x axis, and some vertical line, 
which w e  will take as the y axis. This assumption is not crucial, but it is a logical 
simplification, as the vortices will then reflect the symmetry inherent in the problem. 
The question of whether non-trivial asymmetric solutions exist is beyond the scope of 
the present work. If we stipulate further that S be convex, as can be completely 
characterized by its height above the x axis in the ( + , + ) quadrant, a function we will 
call g(x). At fixed 1, the family of curves satisfying AY = 0 can be parametrized by the 
value of x, say a,, a t  which the curve crosses the positive .r axis. Thus, we want to 
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FIGURE 1. A schematic representation of a row of vortices in the form of a shear layer, with 
defining characteristics. Each curve represents a boundary enclosing a region of constant vorti- 
city, embedded in irrotational fluid, and the row repeats indefinitely to the left and right. The 
point marked 0 is the origin of the 2, y co-ordinate system used in the analysis. 

hold g(a) = 0 while varying the function g to obtain AY = 0 all along the curve. We 
may discretize the problem by representing g by its value at a discrete set of points 
xj for j = 1 , . . . , M. Our previous work showed that the iteration 

would converge rapidly to a boundary shape that is also a streamline. This is the 
algorithm we used to calculate g in the present work. gNis the Nth approximation to 
the boundary shape and k is an under-relaxation factor. AY is computed relative to 
Y(a, 0)  and both AY and Y, in ( 5 )  are computed using gN in (4). Each complete itera- 
tion can be performed in O(M2) operations because (4) is a one-dimensional integral; 
the iteration process is therefore economical. 

The arrangement of vortices we have been considering, along with some defining 
parameters, is summarized in figure 1. A non-dimensional parametrization of the 
family of vortices is W = 2a/Z. Other important non-dimensional vortex character- 
istics are the aspect ratio e = bla, the shear-layer thickness H = 2bl1, and the equiva- 
lent vortex radius R = 21-1(A/n)&, where A is the area of the vortex. For fixed I ,  R 
is a monotonic function of the vortex area. Using the procedure described above, we 
calculated the curve g(2) for a number of values of W up to W = 0.995. The calcula- 
tions were done with M = 50. Some representative members of this family of curves 
are shown in figure 2 (a). A steady state vortex could always be found, even when the 
vortices are almost touching. The continuation of the family past the point at  which 
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FIQURE 2. (a) Representative members of the family of curves g ( x )  defining possible stationary 
vortices in a periodic shear layer. Each curve is the boundary in the (+, + ) quadrant of a 
region of constant vorticity embedded in irrotational fluid. Each vortex is symmetric about the 
two dashed lines giving the x and y axes. The vortices are arranged in 8 row, 88 depicted in 
f i v e  1, and the vertical solid line is the line of symmetry between the depicted vortices and 
their neighbours to the right. The numbers on the curves give the value of W (ratio of vortex 
width to spacing) for the members of the family. (b) The same 88 figure 2(a), but for merged 
vortices. W in this case is 1 + .2gl/Z, where g1 is the minimum height of the curve above the 2: 
axis and I is the vortex spacing. The dotted line represents the boundary of the parallel uniform 
shear layer from which the family bifurcates. 

the vortices touch will be discussed shortly. First, we note that the vortices are nearly 
circular for small W, but become progressively flatter aa W is increased. This tendency 
is also evident in figure 3, where we have plotted the non-dimeneional vortex shape 
characteristics as a function of W; H reaches a maximum of 0.4 at W = 0.7, as opposed 
to a maximum of 0.33 for the elliptical vortices treated by Moore & Saffman. The 
vortex area (measured by R)  reaches a maximum at W = 0.87 for the vortices we 
have calculated. The existence of an u p p r  bound for the vortex area confirms the 
basis of the tearing mechanism for shear growth. If a vortex is initially characterized 
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by a value of W < 0.87, turbulent entrainment of irrotational fluid will cause it to 
evolve in the direction of increasing area (to the right in figure 3) until the area maxi- 
mum is reached at W = 0.87. At this point there is no longer a nearby steady state with 
greater area into which the vortex can evolve, unless the vortex spacing is allowed to 
increase. Presumably, then, the vortex breaks up and becomes amalgamated with one 
or both of its neighbours. This process increases 1 and allows the vortex to continue 
evolving in the direction of increasing area. Implicit in this picture is the assumption 
that no other process (such as subharmonic instability) disrupts the shear layer in the 
time it takes for entrainment to cause the area maximum to be attained. 

The vortex boundary is a well-behaved curve even when neighbouring vortices 
almost touch. This suggests the existence of solutions in which neighbouring vortices 
are joined to one another. For such solutions, the vortex boundaries are no longer 
closed curves; instead, the upper boundary of the region containing vorticity is a 
continuous periodic curve, and the lower boundary is the reflexion of this curve about 
the x axis. Using a minor modification of the procedure described above for discrete 
vortices, it was possible to compute a family of merged vortex solutions. In  the modi- 
fied algorithm, g1 = g (41) was held fixed as the iteration was performed. The para- 
metrization of the discrete vortices was continuously extended to the family of 
merged vortices by defining W = 2gl/l + 1 for the merged vortices. In addition to any 
curved solution g(z), the parallel shear layer with g(x) = g1 is always a solution to the 
problem as stated; the algorithm always converges to the solution nearest the initial 
guess, so that the parallel flow solution can be suppressed by a suitable choice of 
starting values for the iteration, providing an alternate solution exists. Some repre- 
sentative boundary curves for merged vortices are shown in figure 2 ( b ) .  The vortex 
shape for W = 1-05 is similar to the shape of elongated discrete vortices, indicating 
that the family of discrete vortices extends continuously into the family of merged 
vortices. As W approaches 1.2, the curves become progressively straighter, and at  
W = 1.2 only a parallel solution could be found. Hence, the complete family of steady 
shear layers we have exhibited - merged and discrete - can be viewed as bifurcating 
from a parallel shear layer with non-dimensional thickness H = 0.2. Rayleigh (1878) 
computed the dispersion relation for waves on a parallel shear layer of finite thickness 
and constant vorticity, and so inadvertently solved this linear bifurcation problem. 
The dispersion relation predicts vanishing phase velocity (a steady disturbance) when 
kh = 1.278, where k is the streamwise wavenumber of the disturbance and h is the 
dimensional thickness of the layer. Recalling that H = h/Z and k = 2n/l, we find that 
steady disturbances of infinitesimal amplitude and period 1 can exist only on a parallel 
shear layer with H = 0.20, which is precisely in agreement with our computations. In 
addition, it is easily verified from results presented by Rayleigh that the steady 
disturbance represents a displacement of the vortex boundary with the same symmetry 
as that assumed in our own computations. 

The values of R and H for merged vortices may be found in figure 3. Notably, the 
cross-sectional area for the merged vortices does not exceed the maximum found for 
discrete vortices, so that our earlier conclusions with regard to the tearing mechanism 
are unaltered. 

The most widely and readily measured characteristic of shear layer vortices is the 
ratio of maximum-slope thickness of the shear layer (8,) to the vortex spacing ( I ) .  
This ratio can also be easily calculated for the family of uniform vortices, and is shown 
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FI~TJRE 3. Non-dimensional geometric characteristics of the family of vortices, as a function of 
width parameter W. Values of W greater than unity denote merged vortices. 0. aspect ratio 
e = a / b ;  A, area function R = 2(A/n)+/Z; 0, thickness ratio H = 2b/Z; 0, non-dimensional 
vorticity thickness 8JZ, where 8, is the maximum slope thickness of the vortical shear layer. 

in figure 3. Brown & Roshko (1974) report average values of 8JZ = 0.29 for high- 
Reynolds-number uniform-density mixing layers with r = 2( U, - VJ/( U, + V,) = 
0.36. Winant & Browand (1974) report average values of 0.30 at the same value of r.  
Browand & Weidman (1976), working at Reynolds numbers several order of magnitude 
lower than Brown & Roshko, and a t  r = 0.85, report values in the range 0.33 to 0.29, 
with an average of 0.31. 

For the computed vortices, on the other hand, 8,/Z reaches a maximum of 0.30 near 
W = 7 and falls to 0.27 at W = 0.87, where tearing occurs. With the exception of the 
measurement of Brown & Roshko, the observed average values of the thickness ratio 
are equal to or slightly above the maximum thickness ratio for the steady vortices. 
Though this slight mismatch indicates that the assumptions of steadiness and uniform 
vorticity introduce some inaccuracies, the substantive agreement strongly supports 
the hypothesis that shear layer vortices in between amalgamation events are in a quaai- 
steady state which can be modelled aa a steady state of the Euler equations. We note 
that Koochesfahani et al. (1979) have reported values of 8,/1 in the range 0.26 to 
0.27, which are significantly lower than those previously reported. This is unlikely 
to be a Reynolds-number effect, as the Reynolds number is intermediate between that 
investigated by Browand & Weidman and that investigated by Brown & Roshko; 
nor is it likely to be a result of differing velocity ratio, aa the value r = 0.65 is also 
within the range of previous investigations. However, instead of measuring iJW directly, 
Koochesfahani et al. infer it from measurements of the outer potential flow, assuming 
that the perturbations to the potential flow field due to the passage of a vortex are 
the same aa would be produced by the passage of an isolated point vortex. The 
inaccuracies introduced by the latter assumption may account for the difference 
with earlier observations. 



308 R. T. Pierrehumbert and S. E .  Widnull 

Stuart (1967) discovered that the stream function 

ZAU 
47l 

Y = -ln(cosh(2ny/l)-pcos (2nxll)) 

is an exact solution to the two-dimensional Euler equations. p is a variable in the 
range [0, 11 which parametrizes the family; p = 0 corresponds to a parallel hyperbolic 
tangent shear profile, and p = 1 corresponds to a row of singular point vortices. 
Unlike the uniform vortices, the Stuart vortices for p < 1 have continuous vorticity 
distributions. Like the uniform vortices, the Stuart vortices represent a family of 
Polutions that bifurcates from a parallel shear layer and extends continuously to a 
row of point vortices. The value of 6,/1 for the Stuart vortices can be computed from 
(7.12) in Stuart (1967). Unlike the uniform vortices, 8,/Z for the Stuart vortices de- 
creases monotonically from a maximum value of l/n ( x 0.32) at p = 0. This maximum 
value is slightly larger than that for the uniform vortices, and is more nearly consistent 
with the range of observed thickness ratios cited above. Using conditional sampling 
techniques, Browand & Weidman (1976) directly observed the vorticity distribution of 
an ensemble of typical vortices, and found that the Stuart vortex with p = 0.25 corres- 
ponds reasonably well to the observed distribution, save that the observed vorticity 
drops rather more precipitously at  the vortex edge than that for the Stuart vortex. 
This suggests that a pattern intermediate between that of the uniform vortices and 
that of Stuart vortices may be most appropriate for the physical situation. It is 
significant, though, that estimates of maximum thickness ratio differ by under 7 % 
between the Stuart vortex model and the uniform vortex model. 

The observed thickness ratios are all characteristic of rather large vortices, with 
W x 0.7, rather than pointlike vortices with small W. It is thus natural to inquire aa to 
whether there is some physical principal which prevents the small vortices from being 
realized. In  $3 we will see that the energetic properties of the steady states provide 
such an explanation. 

3. The energetics of roll-up, pairing and tearing 
In this section, we will calculate the energy associated with the family of vortices 

described in the previous section. Specifically, for each member of the family, we 
compute the kinetic energy per unit spanwise length in a rectangular region of width Z 
and height d enclosing a single vortex, as represented by dashed lines in figure 1. The 
height d is chosen to be large enough for the velocity on the horizontal branches of 
the contour to be essentially horizontal and of uniform magnitude U,. Denoting this 
region by V ,  the energy is given by 

T = f P J  V /VY.VYdxdy. 

This integral can be simplified using the asymptotic form of Y and repeated applica- 
tions of the divergence theorem. We obtain 
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where the dimensionless quantity, T*, is given by 

with 
f = B(x2 + Y2) 

f = Y 2  
for unmerged vortices, and 

for merged vortices. The value of Y on the vortex boundary, Yl, can be obtained as a 
one-dimensional integral by applying the divergence theorem to (2) twice and can be 
evaluated at any point on the boundary. We choose the point x = 0, y = g( 0) and find 

with f defined as before, and 

for unmerged vortices and 
r' = #@'a + y'f) 

r ' = y Q  

for merged vortices. In  the case of merged vortices, the integral along the curve a8 
is to be understood as excluding the vertical segments of the .boundary where the 
vortices touch. With these formulae, T* can be evaluated using one-dimensional 
integrals alone. The integrands in (9a )  both contain singularities, the first being of 
logarithmic type and the second being of delta-function type. Save for the necessity of 
handling these singular portions analytically, the evaluation of T* presents no par- 
ticular difficulties. Because of non-dimensionalization, T* is a function of the width 
parameter W alone. 

In order to interpret the results of the energy calculation, it is necessary to prove a 
simple energy-conservation lemma for unsteady flows. Consider the evolution of a 
two-dimensional flow with velocity field q(x,y), periodic in z with period L. The 
evolution of the kinetic energy density is determined by 

(10) at(4w2) + q * V(Bw2) + v * (qp) = vq * v2q, 

where u is the viscosity of the fluid. Let V' be a region similar to V as described above, 
but of width L, and T' be the energy in this region. Then, by integrating (10) over V', 
we obtain 

The second integrals on the left- and right-hand sides vanish because of the periodicity 
assumption, whereas the first integrals on the right- and left-hand sides vanish 
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because a? has been taken large enough that q is essentially constant and horizontal 
on the horizontal portions of the contour aV'. The remaining term on the right-hand 
side is strictly negative, and vanishes only if viscosity is neglected. We are left with 
the result 

dT' - Q 0. 
at 

This result would remain valid if an eddy diffusion term of the form (V . u(q)V) q were 
used instead of the molecular diffusion term in (10) so long as u remains positive. 

Now consider the transition from an initial steady state to a final steady state, via 
some intermediate process with (arbitrary, large) period L. Equation (12) then implies 
that the energy in V for the final state is not greater than that for the initial state. 
Suppose the initial and final states have period 1, and I, ,  respectively, so n, I ,  = n, 1, = 
L. If the final state is composed of vortices with non-dimensional width W,, the final 
state energy is, referring to (7), 

The first term is clearly the energy in V' of a vortex sheet with velocity jump 2U,; 
hence, if the initial state is a vortex sheet, (13) and (12) imply 

T*(W.J Q 0. (14a) 

If the initial state consists of n, vortices of width W,, we have instead 

When I ,  = 1,, so n1 = n,, we obtain the result that, for fixed spacing, T* can never 
increase in a spontaneous process. 

Thus, the energetic properties of the family of vortices are characterized by 
T*( W ) .  This function, calculated with M = 100, isplottedin figure 4. 

We are now in position to consider energetic constraints on roll-up, pairing, and 
tearing. Equation (14a) states that any row of vortices produced by roll-up of a 
vortex sheet must have T* negative or zero. From figure 4, we note the expected 
result that small vortices have large, positive T*,  and so cannot be produced by 
roll-up. From the point at which T* becomes negative, we conclude that W 2 0.48 for 
vortices produced in this manner. This is fully consistent with the observations cited 
in $2, though the observed vortices tend to be on the large side, indicating that energy 
is dissipated in the roll-up process. We refer the reader back to figure 2(a) for an 
indication of what the minimum width vortex looks like. 

An important feature of the curve in figure 4 is that T* has a minimum, which 
occurs at a point where the vortex area is at a maximum. This means that when 
turbulent diffusion has caused W to reach 0.87, there is no longer any steady-state 
vortex with lower T* as long as the spacing remains constant; hence, it is likely that 
at this point the spacing will change, i.e. that the vortex will disperse and join one or 
both of its neighbours. The tearing mechanism can thus be predicted on the basis of 
energy considerations as well as on the basis of vortex area. Since the energy curve 
haa a distinct minimum, tearing will occur preferentially at W = 0.87. 
' 

Now suppose pairing occurs, so that two vortices of width ratio W, each amalgamate 
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to form a single vortex of width ratio W ,  in the same space. Then, from (14b), we infer 

(15) 

Since T* is a monotonic decreasing function of W in the region of interest, we conclude 
that the lower bound on W for a vortex produced by pairing always lies between 0.48 
and the value of W for the vortices going into the pairing; the lower bound is attained 
exactly when the pairing occurs without dissipation of energy. Thus, unless W ,  = 0.48, 
the value of W for the shear layer will generally change after pairing, so that pairing 
does not directly result in self-similar growth of the shear layer. However, from (15), 
it is evident that each energy conserving pairing halves the magnitude of T*, so that 
after not too many conservative pairings T* --+ 0 and W --+ 0.5, whereafter pairing 
produces self-similar shear layer growth. This mechanism for evolution toward self- 
similarity cannot operate unless the dissipation during and between pairings is 
sufficiently small. In  general, we can only say that pairing tends to reduce the vortex 
width relative to the spacing. 
To see that entrainment must occur, we note that the difference in area between the 

initial two vortices of spacing 1 and the single vortex they amalgamate into is 

In the extreme case, W ,  = 0.87 (so that the initial area is a maximum), (16) and the 
cnergy curve in figure 4 prcdict W ,  2 0.6; then R2(W2)-$Rz(W1) 2 0.07. Thus, 

T*( W,) G gP*( W,) .  

AA = d 2 ( R 2 (  W,)  - #R2( W1)) (16) 
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vortex pairing is always accompanied by net entrainment of irrotational fluid. The 
lower bound is attained for conservative pairing, and any energy dissipation will 
increase the entrainment. It is also evident from (16) that any self-similar pairing, 
conservative or otherwise, results in entrainment, since W ,  = W, for the self-similar 
cam. Moore & Saffman (1975) have pointed out that there is no apparent mechanism 
which would allow entrainment to occur during pairing but not at other times; hence, 
it is most likely that turbulent diffusion is continually causing the vortex area to grow 
and the energy to decrease, until the energy minimum is attained and amalgamation 
occurs. We have shown that vortex amalgamation tends to decrease the core size 
relative to spacing, so that after amalgamation the cycle can repeat itself. It may be 
the average of many amalgamation-diffusion events that is responsible for the observed 
self-similarity of the free shear layer. 

The tearing mechanism could cause three vortices to reorganize into two instead of 
causing two vortices to reorganize into one. The former sort of vortex transition can 
be treated using the methods applied to pairing. Suppose three vortices in a length 31 
reorganize into two in the same length. Then the equivalent of (15) is 

(17) 

Hence, the conclusions we reached for pairing also apply to this transition, except that 
in this case tearing tends not to decrease W as much as for pairing; this kind of amalga- 
mation therefore tends to result in a shear-layer growth that is more nearly self- 
similar, even allowing for turbulent dissipation. The entrained area is now given by 

T*( W,) < jT*( W1). 

A = +d2(R2( W,) - $R2( W1)) (18) 

whence it can be found that in this case as well the entrainment never vanishes. The 
method we have demonstrated can also be applied to vortex tripling, quadrupling, 
and so forth. 

4. Conclusions 
We have exhibited a class of steady solutions to the two-dimensional Euler equa- 

tions which bear a strong resemblance to the coherent vortex structure observed in the 
free shear layer. For a given vortex spacing, energetic considerations place a lower 
bound on the width and cross-sectional area of vortices that can be produced by 
roll-up of a vortex sheet, so that point-like vortices are precluded. Moreover, there is a 
maximum possible area and minimum possible energy for all steady vortices in a row 
of fixed spacing. This property forms the basis of the tearing mechanism of shear layer 
growth, whereby spacing increases via amalgamation events whenever turbulent 
diffusion of vorticity causes one of the bounds to be violated. Vortex amalgamation - 
whether by tearing or some other process such as the pairing instability - generally 
reduces the core size relative to vortex spacing, but never below the minimum value 
for vortices produced by roll-up. In addition, energetic constraints require that vortex 
amalgamation always be accompanied by entrainment of irrotational fluid. Self- 
similar shear-layer growth is seen to be a result not of individual amalgamation events, 
but rather of amalgamation events followed by relaxation to a similar state via the 
action of turbulent diffusion, in the time it takes for the next amalgamation to take 
place. 

In  this paper we have focused attention on the tearing mechanism of shear layer 
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growth, although the conclusions on initial core size and core size transitions are 
independent of the tearing mechanism. As we have noted earlier, tearing can only be 
an important mechanism if instabilities of the vortical shear layer do not disrupt the 
vortices before tearing can take place. We have completed an investigation of the 
time scale and character of such instabilities in two and three dimensions (Pierre- 
humbert 1980b); the nature of these instabilities, and the role they play in shear-layer 
transitions, will be the subject of a future paper. 

While this manuscript was in revision, it came to our attention that Saffman & 
Szeto (personal communication, June 1979) had also solved the problem treated in 
the present work, though by a different numerical method. The conclusions of Saffman 
& Szeto are essentially identical to ours. In  particular, the values of W for the zero- 
energy vortex (0.48) and for the minimum energy vortex (0.87) agree to two signficant 
figures. We are grateful to Prof. Saffman and Mr Szeto for the opportunity to verify 
our results against theirs. 

This work was supported by the National Science Foundation under contracts 
7414978-ENG and 79-16877-CMEY and by the Air Force Office of Scientific Research 
under contract 79-0006. The numerical work was greatly facilitated by the provision 
of computer time on the Texas Instruments ASC by the Geophysical Fluid Dynamics 
Laboratory at Princeton, N.J. A preliminary version of this work was presented at the 
American Institute of Aeronautics and Astronautics 12th Fluid and Plasma Dynamics 
Conference; the current version appears here by permission of the A.I.A.A. 
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